Approximating weak Chebyshev subspaces by Chebyshev subspaces

نویسندگان

  • Frank Deutsch
  • Larry L. Schumaker
  • Zvi Ziegler
چکیده

We examine to what extent finite-dimensional spaces defined on locally compact subsets of the line and possessing various weak Chebyshev properties (involving sign changes, zeros, alternation of best approximations, and peak points) can be uniformly approximated by a sequence of spaces having related properties. r 2003 Elsevier Science (USA). All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WEAK CHEBYSHEV SUBSPACES AND , 4 - SUBSPACES OF C [ a , b ]

In this paper we show some very interesting properties of weak Chebyshev subspaces and use them to simplify Pinkus's characterization of Asubspaces of C[a, b]. As a consequence we obtain that if the metric projection PG from C[a, b] onto a finite-dimensional subspace G has a continuous selection and elements of G have no common zeros on (a, b), then G is an /4-subspace.

متن کامل

On Chebyshev Subspaces in the Space of Multivariate Differentiable Functions

In the present paper we give a characterization of Chebyshev subspaces in the space of (real or complex) continuously-differentiable functions of two variables. We also discuss various applications of the characterization theorem. Introduction. One of the central problems in approximation theory consists in determining the best approximation; that is, in a normed linear space X with a prescribe...

متن کامل

Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...

متن کامل

NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION

In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2003